当前位置:浙江十一选五开奖直播 >  域名 >  正文 > 历史,让我们看见

浙江十一选五开奖直播 www.wmdzr.com   交易 任务 SEO服务 站长团购 联盟

“原来如此!呵呵?!碧菩牢⑽⒁恍?,双手插在裤袋里,一副吊儿郎当的样子,嘴角带着那丝邪魅的微笑,深邃的黑瞳让人看不出他在思虑什么。唐欣心中只是暗道了一句:宴会,你们的名字是华夏八大家里面的,我想你这宴会,可不是小小的吧。

河南12岁男孩恋胸罩狂偷百件 曾经两度自杀

布玛经过造神计划成为一个被创造出来金眼盘古血脉拥有者,不说她的基因锁开到第四阶,单单就是她经过造神之后,她的脑域开发就极为强大,再配合基因锁的脑域开发,顷刻之间就将一条条思路理清楚了。
他想的没错,乌鲁确实是将东皇和天皇吸收了。当初东皇和天皇带着乌鲁离开后,因为乌鲁的力量并没有完善,而且他们也找不到需要的能量源,于是便将自己的力量准备传给乌鲁一部分,让她能够变成完美状态。

她发现自己要找出时间行者十分的困难,心里也认为刘皓也难以做到,如果刘皓能做到,那么她对刘皓的能力又多了一份了解了。

pandas中的分组技术


浙江省体彩十一选五:目录

  • 1??分组操作
    • 1.1??按照列进行分组
    • 1.2??按照字典进行分组
    • 1.3??根据函数进行分组
    • 1.4??按照list组合
    • 1.5??按照索引级别进行分组
  • 2??分组运算
    • 2.1??agg
    • 2.2??transform
    • 2.3??apply
  • 3??利用groupby技术多进程处理DataFrame

我们在这里要讲一个很常用的技术, 就是所谓的分组技术, 这个在数据库中是非常常用的, 要去求某些分组的统计量, 那么我们需要知道在pandas里面, 这些分组技术是怎么实现的.

分组操作

我们这里要来聊聊在pandas中实现分组运算, 大致上可以按照列, 字典或者Series, 函数, 索引级别进行分组, 我们会逐渐来介绍.

按照列进行分组

import pandas as pd
from pandas import DataFrame, Series
import numpy as np

sep = "---------------------------------------------------------------------------"
data = DataFrame({"key1": ["a", "a", "b", "b", "a"], "key2": ["one", "two", "one", "two", "one"], "data1": np.random.randn(5), "data2": np.random.randn(5)})
print(data)
      data1     data2 key1 key2
0  0.733951  0.000379    a  one
1  1.039029  0.852930    a  two
2  0.921413 -1.644942    b  one
3  0.294560  0.521525    b  two
4  0.286072 -0.074574    a  one

data1按照key1分组为:

groups = data["data1"].groupby(data["key1"])

我们发现得到了一个SeriesGroupBy 对象, 现在我们对这个对象进行迭代:

for name, group in groups:
    print(name)
    print(sep)
    print(group)
    print(sep)
a
---------------------------------------------------------------------------
0    0.733951
1    1.039029
4    0.286072
Name: data1, dtype: float64
---------------------------------------------------------------------------
b
---------------------------------------------------------------------------
2    0.921413
3    0.294560
Name: data1, dtype: float64
---------------------------------------------------------------------------

我们发现, groups有(key, Series)对组成, key根据什么来分组的元素, Series(DataFrame)是分组的元素, Series(DataFrame)的name还是原来的列名.

对你分组进行迭代, 用:

for name, group in groups

groups = data.groupby(data["key1"])
for name, group in groups:
    print(name)
    print(sep)
    print(group)
    print(sep)
a
---------------------------------------------------------------------------
      data1     data2 key1 key2
0  0.733951  0.000379    a  one
1  1.039029  0.852930    a  two
4  0.286072 -0.074574    a  one
---------------------------------------------------------------------------
b
---------------------------------------------------------------------------
      data1     data2 key1 key2
2  0.921413 -1.644942    b  one
3  0.294560  0.521525    b  two
---------------------------------------------------------------------------

groupby就是按照某个值来分组, 无论是对series还是dataframe, 都成立.

我们可以在分好组的对象上调用统计函数.

data.groupby(data["key1"]).mean()
data1 data2
key1
a 0.686351 0.259578
b 0.607986 -0.561709

在每个分组上分别对每个每一列求均值, 如果是非数字列, 或默认剔除.

作业1:在每个分组上分别对每个每一行求均值.

提示: data.groupby(data["key1"]).mean(axis=1)是行不通的.

对于多个列进行分组, 分组的key是对应分组元素的元组.

作业2:对DataFrame用多个列进行分组.

下面其我们来看一个语法糖:

data.groupby([data["key1"], data["key2"]])
<pandas.core.groupby.DataFrameGroupBy object at 0x000001D080230278>

它等价于:

data.groupby(["key1", "key2"])
<pandas.core.groupby.DataFrameGroupBy object at 0x000001D080230630>

我们来验证一下:

groups =data.groupby([data["key1"], data["key2"]])
for name, group in groups:
    print(name)
    print(sep)
    print(group)
    print(sep)
("a", "one")
---------------------------------------------------------------------------
      data1     data2 key1 key2
0  0.733951  0.000379    a  one
4  0.286072 -0.074574    a  one
---------------------------------------------------------------------------
("a", "two")
---------------------------------------------------------------------------
      data1    data2 key1 key2
1  1.039029  0.85293    a  two
---------------------------------------------------------------------------
("b", "one")
---------------------------------------------------------------------------
      data1     data2 key1 key2
2  0.921413 -1.644942    b  one
---------------------------------------------------------------------------
("b", "two")
---------------------------------------------------------------------------
     data1     data2 key1 key2
3  0.29456  0.521525    b  two
---------------------------------------------------------------------------
groups = data.groupby(["key1", "key2"])
for name, group in groups:
    print(name)
    print(sep)
    print(group)
    print(sep)
("a", "one")
---------------------------------------------------------------------------
      data1     data2 key1 key2
0  0.733951  0.000379    a  one
4  0.286072 -0.074574    a  one
---------------------------------------------------------------------------
("a", "two")
---------------------------------------------------------------------------
      data1    data2 key1 key2
1  1.039029  0.85293    a  two
---------------------------------------------------------------------------
("b", "one")
---------------------------------------------------------------------------
      data1     data2 key1 key2
2  0.921413 -1.644942    b  one
---------------------------------------------------------------------------
("b", "two")
---------------------------------------------------------------------------
     data1     data2 key1 key2
3  0.29456  0.521525    b  two
---------------------------------------------------------------------------

我们发现输出结果是一模一样, 总结一下:

data.groupby([data["key1"], data["key2"]])等价于data.groupby(["key1", "key2"])

进一步:

data["data1"].groupby([data["key1"], data["key2"]])等价于data.groupby(["key1", "key2"])["data1"]

作业3: 验证data["data1"].groupby([data["key1"], data["key2"]])等价于data.groupby(["key1", "key2"])["data1"].

data.groupby(["key1", "key2"])["data1"]
<pandas.core.groupby.SeriesGroupBy object at 0x000001D0FCD95D68>
data.groupby(["key1", "key2"])[["data1"]]
<pandas.core.groupby.DataFrameGroupBy object at 0x000001D080232898>

我不知道大家发现没有, 这两个返回的数据类型是有区别的, 我们仔细来看看:

data[["data1"]] # 这是一个DataFrame
data1
0 0.733951
1 1.039029
2 0.921413
3 0.294560
4 0.286072
data["data1"] # 这是一个Series
0    0.733951
1    1.039029
2    0.921413
3    0.294560
4    0.286072
Name: data1, dtype: float64

那么这里的区别就不言而喻了吧

groups = data.groupby(["key1", "key2"])[["data1"]]

for name, group in groups:
    print(name)
    print(sep)
    print(group)
    print(sep)
("a", "one")
---------------------------------------------------------------------------
<class "pandas.core.frame.DataFrame">
---------------------------------------------------------------------------
("a", "two")
---------------------------------------------------------------------------
<class "pandas.core.frame.DataFrame">
---------------------------------------------------------------------------
("b", "one")
---------------------------------------------------------------------------
<class "pandas.core.frame.DataFrame">
---------------------------------------------------------------------------
("b", "two")
---------------------------------------------------------------------------
<class "pandas.core.frame.DataFrame">
---------------------------------------------------------------------------

结果是一样的.

data.groupby(["key1", "key2"])[["data1"]].mean()
data1
key1 key2
a one 0.510012
two 1.039029
b one 0.921413
two 0.294560
data.groupby(["key1", "key2"])["data1"].mean()
key1  key2
a     one     0.510012
      two     1.039029
b     one     0.921413
      two     0.294560
Name: data1, dtype: float64

在做数据聚合的时候就发现了不同,

[["data1"]]得到的是一个DataFrame, 而["data1"]得到的是Series.

按照字典进行分组

我们来看一个按照字典进行分组的例子:

data = DataFrame(np.random.randn(5, 5), columns=["a", "b", "c", "d", "e"], index=["joe", "steve", "wes", "jim", "Travis"])
data
a b c d e
joe -0.089597 1.239307 2.173063 -0.519295 -1.783812
steve 0.539109 0.724553 -0.041899 0.787494 0.394633
wes -0.055417 0.384068 -0.594006 -0.451587 0.722761
jim -0.056767 0.398863 2.140669 -1.060791 -0.953756
Travis 0.245142 -0.468819 -0.863372 -0.151966 1.185567
# 定义一个分组的字典, a, b, c --> red, d, e --> blue
mapping = {"a":"red", "b":"red", "c": "red", "d":"blue", "e": "blue"}
data.groupby(mapping, axis=1).mean()   # 对每一个分组求平均
blue red
joe -1.151554 1.107591
steve 0.591063 0.407255
wes 0.135587 -0.088452
jim -1.007273 0.827589
Travis 0.516800 -0.362350

作业4:自己设计一个index的mapping, 按axis=0进行分组.

根据函数进行分组

话不多说, 直接来看例子:

data.groupby(len).mean()
a b c d e
3 -0.067260 0.674079 1.239909 -0.677224 -0.671602
5 0.539109 0.724553 -0.041899 0.787494 0.394633
6 0.245142 -0.468819 -0.863372 -0.151966 1.185567

我们发现, 字典和函数都是作用到索引上的.

按照list组合

这个例子非常简单:

data.groupby(["1", "1", "1", "2", "2"]).mean()
a b c d e
1 0.131365 0.782643 0.512386 -0.061130 -0.222139
2 0.094188 -0.034978 0.638649 -0.606378 0.115905

他会自动判断是按照列还是list.

按照索引级别进行分组

作业5: 自己学习按索引级别进行分组.

分组运算

分组运算主要设计到3个函数, agg, transform和apply.

我们一个一个来看.

agg

data = DataFrame({"key1": ["a", "a", "b", "b", "a"], "key2": ["one", "two", "one", "two", "one"], "data1": np.random.randn(5), "data2": np.random.randn(5)})
data
data1 data2 key1 key2
0 0.441278 -0.848457 a one
1 1.843375 -0.522482 a two
2 -1.435176 -0.191682 b one
3 -2.700772 -0.832993 b two
4 -1.430386 -1.910834 a one
data.groupby("key2").agg(np.mean)
data1 data2
key2
one -0.808095 -0.983658
two -0.428699 -0.677738

当然, 这个等价于:

data.groupby("key2").mean()
data1 data2
key2
one -0.808095 -0.983658
two -0.428699 -0.677738

原理: 聚合函数会在group后的每个切片上(group后的每一行或每一列)计算出值.

我们也可以自定义函数:

data.groupby("key2").agg(lambda x: x.max() - x.min())
data1 data2
key2
one 1.876454 1.719153
two 4.544147 0.310511

他会在每个分组的每个列上调用这个函数.

data.groupby("key2").agg([np.mean, np.max,np.min])
data1 data2
mean amax amin mean amax amin
key2
one -0.808095 0.441278 -1.435176 -0.983658 -0.191682 -1.910834
two -0.428699 1.843375 -2.700772 -0.677738 -0.522482 -0.832993
data.groupby("key2").agg([("平均值:", np.mean), ("最大值",np.max), ("最小值",np.min)]).rename({"one": "第一组", "two":"第二组"})
data1 data2
平均值: 最大值 最小值 平均值: 最大值 最小值
key2
第一组 -0.808095 0.441278 -1.435176 -0.983658 -0.191682 -1.910834
第二组 -0.428699 1.843375 -2.700772 -0.677738 -0.522482 -0.832993
# 对不同列用不同的分组函数 
data.groupby("key2").agg({"data1":[("平均值:", np.mean), ("最大值",np.max)], "data2":[("最小值",np.min)]}).rename({"one": "第一组", "two":"第二组"})
data2 data1
最小值 平均值: 最大值
key2
第一组 -1.910834 -0.808095 0.441278
第二组 -0.832993 -0.428699 1.843375

transform

transform是一个矢量化的函数, 如果最后我们得到的值和分组切片不一致, 会进行广播:

data
data1 data2 key1 key2
0 0.441278 -0.848457 a one
1 1.843375 -0.522482 a two
2 -1.435176 -0.191682 b one
3 -2.700772 -0.832993 b two
4 -1.430386 -1.910834 a one
data.groupby("key1").transform(np.mean)
data1 data2
0 0.284756 -1.093924
1 0.284756 -1.093924
2 -2.067974 -0.512338
3 -2.067974 -0.512338
4 0.284756 -1.093924

仔细看, 0,1, 4一组, 2,3一组, 发生了广播.

现在有个需求,按分组减去均值.

data.groupby("key1").transform(lambda x: x - x.mean())
data1 data2
0 0.156523 0.245468
1 1.558619 0.571442
2 0.632798 0.320656
3 -0.632798 -0.320656
4 -1.715142 -0.816910

a, b分组的各列都减去了他们的均值, 不信, 来看:

data.groupby("key1").transform(lambda x: x - x.mean()).groupby([1, 1, 0,0, 1]).mean()
data1 data2
0 1.110223e-16 -5.551115e-17
1 7.401487e-17 -1.110223e-16

apply

这个函数是transform的加强版, transform只能返回和原来切片大小一样大的, 但apply是可以任意的. 其实我们之前就用过apply函数, 我们知道, apply是作用在列(行)上的, applymap是作用在函数上的.

data = DataFrame({"key1": ["a", "a", "b", "b", "a"], "key2": ["one", "two", "one", "two", "one"], "data1": np.random.randn(5), "data2": np.random.randn(5)})
data
data1 data2 key1 key2
0 -0.312694 0.073574 a one
1 -0.902065 -0.854249 a two
2 -0.440915 0.228551 b one
3 -0.406243 -0.878505 b two
4 1.812926 -0.114598 a one

如果我们要找出one, 和two分组中选出data2最大的前两个呢?

data.groupby("key2").apply(lambda x: x.sort_values(by="data2")[-2:])
data1 data2 key1 key2
key2
one 0 -0.312694 0.073574 a one
2 -0.440915 0.228551 b one
two 3 -0.406243 -0.878505 b two
1 -0.902065 -0.854249 a two

去掉group层次索引:

data.groupby("key2", group_keys=False).apply(lambda x: x.sort_values(by="data2")[-2:])
data1 data2 key1 key2
0 -0.312694 0.073574 a one
2 -0.440915 0.228551 b one
3 -0.406243 -0.878505 b two
1 -0.902065 -0.854249 a two

总结一下: apply就是把分完组的切片挨个(按行, 按列, 或者整体)调用我们的函数, 最后再把结果合并起来.

利用groupby技术多进程处理DataFrame

我们这里要教大家用一种groupby技术, 来实现对DataFrame并行处理.

pip install joblib

因为我们windows系统的限制, 我们的代码是在linux上运行的:


import math
from joblib import Parallel, delayed
from pandas import DataFrame
import pandas as pd
import numpy as np
import time

begin = time.time()
test = DataFrame(np.random.randn(10000000, 10))
test_other = test.copy()
groups = test.groupby(lambda x: x % 8)

def func(x):
    return x.applymap(lambda y: math.pow(y, 4))

pd.concat(Parallel(n_jobs=8)(delayed(func)(group) for name, group in groups))
print(time.time() - begin)


begin = time.time()
test_other.applymap(lambda x: math.pow(x, 4))
print(time.time() - begin)

运算结果为:
23.35878014564514
62.76386260986328

速度大概提升了2.5倍, 还是很不错的.

当前文章://www.wmdzr.com/list_90952.html

发布时间:2019-03-24 18:11:43

段位不同必伤心 暑假高校游,为何如此火爆? 花博士送给2015年还在奋斗的你! 文创优化?-?黄胤然首倡文化新概念 音乐治疗的发展历史 怎么说呐,大家放心 数字背后的科学 南昌市省公积金贷款及提前部分还贷攻略

为什么在美国体育生比学霸更受欢迎? 卵子冷冻能否带来“静蕾效应”? 不应该忘记的 不要怕青春期孩子?也不要让孩子怕你! 因为我们值得 失恋后不相信爱情? 出卖女人的是它们 让脖子走出冷宫 那些孩子教会我们的事 我觉得你这个男人实在是太色了 不要让孩子未来孤苦无依 罗李华谈:属狗的人2016年运程 不可小觑的幼儿园“阴影” 你真的适合创业吗?答案是“未必”! 你知道吗,天子召妓还需要N道手续批准呢? 家长观念中的误区 双章书法内容详释 【情感问答】借男友的钱要还吗 自己改变命运的方法

编辑:海扁

    文章推荐

    分类排行榜

    专栏文章

    更多>

    服务推荐

    浙江十一选五开奖直播
    从什么时候起,我开始害怕送花的人! 扫一扫关注最新创业资讯